Certificate

No.: 968/FSP 1064.04/20

Product tested	QuartzTM Valve Position Indicator/Sensor
Type designation	QX- and QN- Models (Details see Appenix of Certificate)
holder USA Inc. dba StoneL	

Valid until 2025-07-03

The issue of this certificate is based upon an examination, whose results are documented in Report No. 968/FSP 1064.04/20 dated 2020-07-03.
This certificate is valid only for products which are identical with the product tested.

Sensing of the position of valves or actuators. The configuration and number of switches (HFT = 0 or 1) depend on the target safety level (SIL) up to SIL 3 and the evaluation of the signals in the safety controller.

Opening and closing position of the switches may be configured such that an open contact results to an action into the safe direction of the SIF.

Model Series	Type	$\lambda / 1 / h$	$\lambda_{s} / 1 / h$	$\lambda_{d} / 1 / h$	SFF
$\begin{array}{lll} \text { QX2J, } & \text { QX4J, } & \text { QX5J, } \\ \text { QX7J } & & \\ \text { QN2J, } & \text { QN4J, } & \text { QN5J, } \\ \text { QN7J } \end{array}$	A	9.93E-09	8.27E-09	1.66E-09	83,3\%
```QX2L, QX4L, QX5L, QX7L QN2L, QN4L, QN5L, QN7L```	A	1.97E-08	1.23E-08	7.38E-09	62,4\%
$\begin{array}{ll} \hline \text { QX2P, QX4P, QX5P, } \\ \text { QX7P } & \\ \text { QN2P, QN4P, QN5P, } \\ \text { QN7P } & \end{array}$	A	9.93E-09	8.27E-09	1.66E-09	83,3\%
$\begin{aligned} & \text { QX2G, QX4G, QX5G, } \\ & \text { QX7G } \\ & \text { QN2G, QN4G, QN5G, } \\ & \text { QN7G } \end{aligned}$	A	9.93E-09	8.27E-09	$1.66 \mathrm{E}-09$	83,3\%
$\begin{aligned} & \text { QX2H, QX4H, QX5H, } \\ & \text { QX7H, QX8H } \\ & \text { QN2H, QN4H, QN5H, } \\ & \text { QN7H, QN8H, } \end{aligned}$	A	9.93E-09	8.27E-09	1.66E-09	83,3\%
QX2M, QX4M, QX5M, QX7M,   QN2M, QN4M, QN5M, QN7M	A	9.93E-09	8.27E-09	$1.66 \mathrm{E}-09$	83,3\%
$\begin{aligned} & \text { QX2S, QX4S, QX5S, } \\ & \text { QX7S } \\ & \text { QN2S, QN4S, QN5S, } \\ & \text { QN7S } \end{aligned}$	A	1.97E-08	1.23E-08	7.38E-09	62,4\%
$\begin{aligned} & \text { QX4X,QX6X, } \\ & \text { QN4X, QN6X } \end{aligned}$	A	1.60E-07	$9.34 \mathrm{E}-08$	6.62E-08	58,4\%
$\begin{array}{ll} \text { QX2A, } & \text { QX4A, } \text { QX5A, } \\ \text { QX7A, } \\ \text { QN2A, } & \\ \text { QN7A } & \\ \hline \end{array}$	A	$2.97 \mathrm{E}-08$	1.91E-08	$1.07 \mathrm{E}-08$	64,4\%
QX2N, QX4N, QX5N, QX6N, QX7N   QN2N, QN4N, QN5N, QN6N, QN7N	A	$2.90 \mathrm{E}-08$	$2.21 \mathrm{E}-08$	$6.91 \mathrm{E}-09$	76,2\%
QX33, QN33	A	2.73E-07	1.64E-07	$1.10 \mathrm{E}-07$	60,1\%
QX44, QN44	A	2.02E-07	$1.35 \mathrm{E}-07$	$6.78 \mathrm{E}-08$	66,8\%

[^0]Safety function: $\quad$ Sensing of the position of valves or actuators and translating it into a 420mA value. Certified up to SIL 2, see note below.
Diagnostic measures: For the calculation of the safety related reliability data it is assumed that the safety controller has to perform the following diagnostic measures: In case the current $<3 \mathrm{~mA}$ or $>21 \mathrm{~mA}$ the safety controller has to perform a safety related action.

Model Series	$\boldsymbol{\lambda} \mathbf{1} / \mathbf{h}$	$\boldsymbol{\lambda}_{\mathbf{s}} / \mathbf{1} / \mathbf{h}$	$\boldsymbol{\lambda}_{\mathbf{d}} / \mathbf{1} / \mathrm{h}$	$\boldsymbol{\lambda}_{\mathrm{dd}} / \mathbf{1} / \mathbf{h}$	$\boldsymbol{\lambda}_{\mathrm{du}} / \mathbf{1} / \mathrm{h}$	SFF
QN5O, QX5O	$1,36 \mathrm{E}-07$	$2,84 \mathrm{E}-08$	$1,07 \mathrm{E}-07$	$7,03 \mathrm{E}-08$	$3,69 \mathrm{E}-08$	$72,8 \%$
QN7O, QX7O	$1,31 \mathrm{E}-07$	$2,84 \mathrm{E}-08$	$1,03 \mathrm{E}-07$	$6,65 \mathrm{E}-08$	$3,64 \mathrm{E}-08$	$72,3 \%$

$\lambda \quad$ total failure rate
$\lambda_{d} \quad$ Current deviates more than $20 \%$ from the "real" value (valve Position)
$\lambda_{s} \quad$ Current deviates less than $20 \%$ from the "real" value (valve Position)
$\lambda$ dd $\quad$ Current is $<3 \mathrm{~mA}$ or $>21 \mathrm{~mA}$
$\lambda$ du Current deviates more than $20 \%$ from the "real" value (valve Position), but is still within 3 to 21 mA
Safe Failure Fraction SFF $=\left(\lambda-\lambda_{d u}\right) / \lambda$

Note: The models listed in the table above are not available in a redundant configuration. Due to this fact the hardware fault tolerance is $0(\mathrm{HFT}=0)$ and considering the achieved SFF, which is smaller than $90 \%$, the devices fulfil the requirements for the hardware integrity up to SIL 2 of IEC 61511-1, table 6 and IEC61508-2, table 2.

Safety function: Sensing of the position of valves or actuators and translating it into a 010kOhm resistance value. Certified up to SIL 2, see note below.
Diagnostic measures: For the calculation of the safety related reliability data it is assumed that the safety controller has to perform the following diagnostic measures: In case the resistance is $>11 \mathrm{kOhm}$ the safety controller has to perform a safety related action.

Model Series	$\boldsymbol{\lambda} \mathbf{1} / \mathbf{h}$	$\boldsymbol{\lambda}_{\mathbf{s}} / \mathbf{1} / \mathbf{h}$	$\boldsymbol{\lambda}_{\mathbf{d}} / \mathbf{1} / \mathbf{h}$	$\boldsymbol{\lambda}_{\mathrm{dd}} / \mathbf{1} / \mathbf{h}$	$\boldsymbol{\lambda}_{\mathrm{du}} / \mathbf{1} / \mathbf{h}$	SFF
QNBO, QXBO	$3,80 \mathrm{E}-08$	$3,50 \mathrm{E}-09$	$3,45 \mathrm{E}-08$	$3,04 \mathrm{E}-08$	$4,10 \mathrm{E}-09$	$89,2 \%$
QNCO, QXCO	$3,37 \mathrm{E}-08$	$3,07 \mathrm{E}-09$	$3,06 \mathrm{E}-08$	$2,70 \mathrm{E}-08$	$3,67 \mathrm{E}-09$	$89,1 \%$

$\lambda \quad$ total failure rate
$\lambda_{d} \quad$ Resistance deviates more than $20 \%$ from the "real" value (valve Position)
$\lambda_{s} \quad$ Resistance deviates less than $20 \%$ from the "real" value (valve Position)
$\lambda_{\text {dd }} \quad$ Resistance is $>11 \mathrm{kOhm}$
$\lambda_{d u} \quad$ Resistance deviates more than $20 \%$ from the "real" value (valve Position), but is still below 11kOhm

Safe Failure Fraction SFF $=(\lambda-\lambda d u) / \lambda$

Note: The models listed in the table above are not available in a redundant configuration. Due to this fact the hardware fault tolerance is $0(\mathrm{HFT}=0)$ and considering the achieved SFF, which is smaller than $90 \%$, the devices fulfil the requirements for the hardware integrity up to SIL 2 of IEC 61511-1, table 6 and IEC61508-2, table 2.

Safety function: $\quad$ Sensing of the position of valves or actuators. Certified up to SIL 2.

Model Series	$\boldsymbol{\lambda} \mathbf{1} / \mathbf{h}$	$\lambda_{\mathrm{s}} / \mathbf{1} / \mathrm{h}$	$\boldsymbol{\lambda}_{\mathrm{d}} / \mathbf{1} / \mathrm{h}$	$\lambda_{\mathrm{dd}} / \mathbf{1} / \mathbf{h}$	$\lambda_{\mathrm{du}} / \mathbf{1} / \mathbf{h}$	SFF
QN35, QX35	$2,24 \mathrm{E}-07$	$1,40 \mathrm{E}-07$	$8,40 \mathrm{E}-08$	0	$8,40 \mathrm{E}-08$	$62,5 \%$
QN45, QX45	$3,55 \mathrm{E}-07$	$2,43 \mathrm{E}-07$	$1,11 \mathrm{E}-07$	0	$1,11 \mathrm{E}-07$	$68,6 \%$


[^0]:    $\lambda \quad$ Total Failure Rate $\left(\lambda=\lambda_{s}+\lambda_{d}\right)$
    $\lambda_{s} \quad$ Safe Failure Rate
    $\lambda_{d} \quad$ Dangerous Failure Rate
    Safe Failure Fraction SFF $=\lambda_{s} / \lambda$

